Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
JACC Basic Transl Sci ; 9(3): 380-395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559624

RESUMO

To solve the clinical transformation dilemma of lamin A/C (LMNA)-mutated dilated cardiomyopathy (LMD), we developed an LMNA-mutated primate model based on the similarity between the phenotype of primates and humans. We screened out patients with LMD and compared the clinical data of LMD with TTN-mutated and mutation-free dilated cardiomyopathy to obtain the unique phenotype. After establishment of the LMNA c.357-2A>G primate model, primates were continuously observed for 48 months, and echocardiographic, electrophysiological, histologic, and transcriptional data were recorded. The LMD primate model was found to highly simulate the phenotype of clinical LMD. In addition, the LMD primate model shared a similar natural history with humans.

2.
World J Stem Cells ; 16(3): 267-286, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38577236

RESUMO

BACKGROUND: The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years, which also may lead to some complications such as alveolar bone resorption or tooth root resorption. Low-intensity pulsed ultrasound (LIPUS), a noninvasive physical therapy, has been shown to promote bone fracture healing. It is also reported that LIPUS could reduce the duration of orthodontic treatment; however, how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear. AIM: To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement (OTM) model and explore the underlying mechanisms. METHODS: A rat model of OTM was established, and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections. In vitro, human bone marrow mesenchymal stem cells (hBMSCs) were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction, Western blot, alkaline phosphatase (ALP) staining, and Alizarin red staining. The expression of Yes-associated protein (YAP1), the actin cytoskeleton, and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA (siRNA) application via immunofluorescence. RESULTS: The force treatment inhibited the osteogenic differentiation potential of hBMSCs; moreover, the expression of osteogenesis markers, such as type 1 collagen (COL1), runt-related transcription factor 2, ALP, and osteocalcin (OCN), decreased. LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force. Mechanically, the expression of LaminA/C, F-actin, and YAP1 was downregulated after force treatment, which could be rescued by LIPUS. Moreover, the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment. Consistently, LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo. The decreased expression of COL1, OCN, and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS. CONCLUSION: LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis, which may be a promising strategy to reduce the orthodontic treatment process.

3.
Front Cell Dev Biol ; 12: 1368318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638530

RESUMO

A comprehensive understanding of the molecules that play key roles in the physiological and pathological homeostasis of the human intervertebral disc (IVD) remains challenging, as does the development of new therapeutic treatments. We recently found a positive correlation between IVD degeneration (IDD) and P2X7 receptor (P2X7R) expression increases both in the cytoplasm and in the nucleus. Using immunocytochemistry, reverse transcription PCR (RT-PCR), overexpression, and chromatin immunoprecipitation, we found that NFATc1 and hypoxia-inducible factor-1α (HIF-1α) are critical regulators of P2X7R. Both transcription factors are recruited at the promoter of the P2RX7 gene and involved in its positive and negative regulation, respectively. Furthermore, using the proximity ligation assay, we revealed that P2X7R and NFATc1 form a molecular complex and that P2X7R is closely associated with lamin A/C, a major component of the nuclear lamina. Collectively, our study identifies, for the first time, P2X7R and NFATc1 as markers of IVD degeneration and demonstrates that both NFATc1 and lamin A/C are interaction partners of P2X7R.

4.
Cells ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474363

RESUMO

Lamins, the nuclear intermediate filaments, are important regulators of nuclear structural integrity as well as nuclear functional processes such as DNA transcription, replication and repair, and epigenetic regulations. A portion of phosphorylated lamin A/C localizes to the nuclear interior in interphase, forming a lamin A/C pool with specific properties and distinct functions. Nucleoplasmic lamin A/C molecular functions are mainly dependent on its binding partners; therefore, revealing new interactions could give us new clues on the lamin A/C mechanism of action. In the present study, we show that lamin A/C interacts with nuclear phosphoinositides (PIPs), and with nuclear myosin I (NM1). Both NM1 and nuclear PIPs have been previously reported as important regulators of gene expression and DNA damage/repair. Furthermore, phosphorylated lamin A/C forms a complex with NM1 in a phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent manner in the nuclear interior. Taken together, our study reveals a previously unidentified interaction between phosphorylated lamin A/C, NM1, and PI(4,5)P2 and suggests new possible ways of nucleoplasmic lamin A/C regulation, function, and importance for the formation of functional nuclear microdomains.


Assuntos
Núcleo Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermediários/metabolismo , Interfase , Lamina Tipo A/metabolismo , Humanos , Linhagem Celular Tumoral
5.
Vet Microbiol ; 291: 110026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364467

RESUMO

This study demonstrates for the first time that the matrix (M) protein of BEFV is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm in a transcription-, carrier-, and energy-dependent manner. Experiments performed in both intact cells and digitonin-permeabilized cells revealed that M protein targets the nucleolus and requires carrier, cytosolic factors or energy input. By employing sequence and mutagenesis analyses, we have determined both nuclear localization signal (NLS) 6KKGKSK11 and nuclear export signal (NES) 98LIITSYL TI106 of M protein that are important for the nucleocytoplasmic shuttling of M protein. Furthermore, we found that both lamin A/C and chromosome maintenance region 1 (CRM-1) proteins could be coimmunoprecipitated and colocalized with the BEFV M protein. Knockdown of lamin A/C by shRNA and inhibition of CRM-1 by leptomycin B significantly reduced virus yield. Collectively, this study provides novel insights into nucleocytoplasmic shuttling of the BEFV M protein modulated by lamin A/C and CRM-1 and by a transcription- and carrier- and energy-dependent pathway.


Assuntos
Transporte Ativo do Núcleo Celular , Vírus da Febre Efêmera Bovina , Lamina Tipo A , Sinais de Localização Nuclear , Animais , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Citoplasma/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vírus da Febre Efêmera Bovina/metabolismo , Proteínas Estruturais Virais/metabolismo
6.
Life Sci ; 341: 122489, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340979

RESUMO

Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.


Assuntos
Cardiomiopatias , Distrofias Musculares , Humanos , Lamina Tipo A/genética , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/terapia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação , Polímeros
7.
J Orthop Traumatol ; 25(1): 8, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381214

RESUMO

BACKGROUND: The network of intermediate filament proteins underlying the inner nuclear membrane forms the nuclear lamina. Lamins have been associated with important cellular functions: DNA replication, chromatin organization, differentiation of the cell, apoptosis and in maintenance of nuclear structure. Little is known regarding the etiopathogenesis of adhesive capsulitis (AC); recently, a dysregulating fibrotic response starting from a subpopulation has been described within the fibroblast compartment, which suddenly turns on an activated phenotype. Considering the key role of A-type lamins in the regulation of cellular stability and function, our aim was to compare the lamin A/C expression between patients with AC and healthy controls. MATERIALS AND METHODS: A case-control study was performed between January 2020 and December 2021. Tissue samples excised from the rotator interval were analysed for lamin A/C expression by immunohistochemistry. Patients with AC were arbitrarily distinguished according to the severity of shoulder flexion limitation: ≥ 90° and < 90°. Controls were represented by samples obtained by normal rotator interval excised from patients submitted to shoulder surgery. The intensity of staining was graded, and an H-score was assigned. Statistical analysis was performed (Chi-square analysis; significance was set at alpha = 0.05). RESULTS: We enrolled 26 patients [12 male and 14 female, mean age (SD): 52.3 (6.08)] and 15 controls [6 male and 9 female, mean age (SD): 57.1 (5.3)]. The expression of lamin A/C was found to be significantly lower in the fibroblasts of patients with adhesive capsulitis when compared with controls (intensity of staining: p: 0.005; H-score: 0.034); no differences were found regarding the synoviocytes (p: > 0.05). Considering only patients with AC, lamin A/C intensity staining was found to be significantly higher in samples where acute inflammatory infiltrate was detected (p: 0.004). No significant changes in levels of lamin A/C expression were documented between the mild and severe adhesive capsulitis severity groups. CONCLUSIONS: Our study demonstrated that the activity of lamin A/C in maintaining nuclear structural integrity and cell viability is decreased in patients with adhesive capsulitis. The phase of the pathogenetic process (freezing and early frozen) is the key factor for cell functionality. On the contrary, the clinical severity of adhesive capsulitis plays a marginal role in nuclear stability. LEVEL OF EVIDENCE: III.


Assuntos
Bursite , Lamina Tipo A , Humanos , Feminino , Masculino , Estudos de Casos e Controles , Bursite/cirurgia
8.
Cells ; 13(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247853

RESUMO

In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.


Assuntos
Desmina , Lamina Tipo A , Distrofia Muscular de Emery-Dreifuss , Plectina , Humanos , Desmina/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mioblastos , Plectina/metabolismo
9.
J Neurosci Res ; 102(1): e25263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284866

RESUMO

Lamin A/C is involved in macrophage activation and premature aging, also known as progeria. As the resident macrophage in brain, overactivation of microglia causes brain inflammation, promoting aging and brain disease. In this study, we investigated the role of Lamin A/C in microglial activation and its impact on progeria using Lmna-/- mice, primary microglia, Lmna knockout (Lmna-KO) and Lmna-knockdown (Lmna-KD) BV2 cell lines. We found that the microglial activation signatures, including cell proliferation, morphology changes, and proinflammatory cytokine secretion (IL-1ß, IL-6, and TNF-α), were significantly suppressed in all Lamin A/C-deficient models when stimulated with LPS. TMT-based quantitative proteomic and bioinformatic analysis were further applied to explore the mechanism of Lamin A/C-regulated microglia activation from the proteome level. The results revealed that immune response and phagocytosis were impaired in Lmna-/- microglia. Stat1 was identified as the hub protein in the mechanism by which Lamin A/C regulates microglial activation. Additionally, DNA replication, chromatin organization, and mRNA processing were also altered by Lamin A/C, with Ki67 fulfilling the main hub function. Lamin A/C is a mechanosensitive protein and, the immune- and proliferation-related biological processes are also regulated by mechanotransduction. We speculate that Lamin A/C-mediated mechanotransduction is required for microglial activation. Our study proposes a novel mechanism for microglial activation mediated by Lamin A/C.


Assuntos
Lamina Tipo A , Progéria , Animais , Camundongos , Proliferação de Células , Ativação de Macrófagos , Mecanotransdução Celular , Microglia , Fagocitose , Proteômica
10.
J Physiol Sci ; 73(1): 27, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940872

RESUMO

Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in genes encoding nuclear envelope proteins, is clinically characterized by muscular dystrophy, early joint contracture, and life-threatening cardiac abnormalities. To elucidate the pathophysiological mechanisms underlying striated muscle involvement in EDMD, we previously established a murine model with mutations in Emd and Lmna (Emd-/-/LmnaH222P/H222P; EH), and reported exacerbated skeletal muscle phenotypes and no notable cardiac phenotypes at 12 weeks of age. We predicted that lack of emerin in LmnaH222P/H222P mice causes an earlier onset and more pronounced cardiac dysfunction at later stages. In this study, cardiac abnormalities of EDMD mice were compared at 18 and 30 weeks of age. Contrary to our expectations, physiological and histological analyses indicated that emerin deficiency causes no prominent differences of cardiac involvement in LmnaH222P/H222P mice. These results suggest that emerin does not contribute to cardiomyopathy progression in LmnaH222P/H222P mice.


Assuntos
Cardiomiopatias , Distrofia Muscular de Emery-Dreifuss , Camundongos , Animais , Modelos Animais de Doenças , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia , Cardiomiopatias/genética , Mutação
11.
Cells ; 12(22)2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998321

RESUMO

Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.


Assuntos
Lipodistrofia Parcial Familiar , Humanos , Adipócitos Marrons/metabolismo , Lamina Tipo A/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacologia , Receptores de Mineralocorticoides/metabolismo , Células HEK293 , Tecido Adiposo Marrom/metabolismo
12.
J Transl Med ; 21(1): 690, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840136

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is a severe, non-ischemic heart disease which ultimately results in heart failure (HF). Decades of research on DCM have revealed diverse aetiologies. Among them, familial DCM is the major form of DCM, with pathogenic variants in LMNA being the second most common form of autosomal dominant DCM. LMNA DCM is a multifactorial and complex disease with no specific treatment thus far. Many studies have demonstrated that perturbing candidates related to various dysregulated pathways ameliorate LMNA DCM. However, it is unknown whether these candidates could serve as potential therapeutic targets especially in long term efficacy. METHODS: We evaluated 14 potential candidates including Lmna gene products (Lamin A and Lamin C), key signaling pathways (Tgfß/Smad, mTor and Fgf/Mapk), calcium handling, proliferation regulators and modifiers of LINC complex function in a cardiac specific Lmna DCM model. Positive candidates for improved cardiac function were further assessed by survival analysis. Suppressive roles and mechanisms of these candidates in ameliorating Lmna DCM were dissected by comparing marker gene expression, Tgfß signaling pathway activation, fibrosis, inflammation, proliferation and DNA damage. Furthermore, transcriptome profiling compared the differences between Lamin A and Lamin C treatment. RESULTS: Cardiac function was restored by several positive candidates (Smad3, Yy1, Bmp7, Ctgf, aYAP1, Sun1, Lamin A, and Lamin C), which significantly correlated with suppression of HF/fibrosis marker expression and cardiac fibrosis in Lmna DCM. Lamin C or Sun1 shRNA administration achieved consistent, prolonged survival which highly correlated with reduced heart inflammation and DNA damage. Importantly, Lamin A treatment improved but could not reproduce long term survival, and Lamin A administration to healthy hearts itself induced DCM. Mechanistically, we identified this lapse as caused by a dose-dependent toxicity of Lamin A, which was independent from its maturation. CONCLUSIONS: In vivo candidate evaluation revealed that supplementation of Lamin C or knockdown of Sun1 significantly suppressed Lmna DCM and achieve prolonged survival. Conversely, Lamin A supplementation did not rescue long term survival and may impart detrimental cardiotoxicity risk. This study highlights a potential of advancing Lamin C and Sun1 as therapeutic targets for the treatment of LMNA DCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fibrose , Inflamação/complicações , Fator de Crescimento Transformador beta , Mutação
13.
Mol Cell ; 83(20): 3659-3668.e10, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832547

RESUMO

The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.


Assuntos
Lamina Tipo A , Membrana Nuclear , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosforilação , Dano ao DNA , DNA/metabolismo , Núcleo Celular/metabolismo
14.
Front Biosci (Landmark Ed) ; 28(6): 113, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37395027

RESUMO

BACKGROUND: Lamins are the major component of nuclear lamina. Alternative splicing of the 12 exons comprising lamin A/C gene creates five known transcript variants, lamin A, lamin C, lamin AΔ10, lamin AΔ50, and lamin C2. The main objective for this study was to examine the association of critical pathways, networks, molecular and cellular functions regulated by each Lamin A/C transcript variants. METHODS: Ion AmpliSeq Transcriptome Human Gene Expression analysis was performed on MCF7 cells stably transfected with lamin A/C transcript variants. RESULTS: Lamin A or lamin AΔ50 upregulation was associated with activation of cell death and inactivation of carcinogenesis while both lamin C or lamin AΔ10 upregulation activated carcinogenesis and cell death. CONCLUSIONS: Data suggest anti-apoptotic and anti-senescence effects of lamin C and lamin AΔ10 as several functions, including apoptosis and necrosis functions are inactivated following lamin C or lamin AΔ10 upregulation. However, lamin AΔ10 upregulation is associated with a more carcinogenic and aggressive tumor phenotype. Lamin A or lamin AΔ50 upregulation is associated with a predicted activation of increased cell death and inactivation of carcinogenesis. Thus, different signaling pathways, networks, molecular and cellular functions are activated/inactivated by lamin A/C transcript variants resulting in a large number of laminopathies.


Assuntos
Lamina Tipo A , Transcriptoma , Humanos , Processamento Alternativo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Células MCF-7 , Transdução de Sinais/genética
15.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446344

RESUMO

Mutations in the LMNA gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (LMNA-DCM). The main clinical risks in LMNA-DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which LMNA mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if LMNA mutations also cause vascular alterations that might contribute to the etiopathogenesis of LMNA-DCM, we generated and characterized Lmnaflox/floxSM22αCre mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes. Like mice with whole body or cardiomyocyte-specific lamin A/C ablation, Lmnaflox/floxSM22αCre mice recapitulated the main hallmarks of human LMNA-DCM, including ventricular systolic dysfunction, cardiac conduction defects, cardiac fibrosis, and premature death. These alterations were associated with elevated expression of total and phosphorylated (active) Smad3 and cleaved (active) caspase 3 in the heart. Lmnaflox/floxSM22αCre mice also exhibited perivascular fibrosis in the coronary arteries and a switch of aortic VSMCs from the 'contractile' to the 'synthetic' phenotype. Ex vivo wire myography in isolated aortic rings revealed impaired maximum contraction capacity and an altered response to vasoconstrictor and vasodilator agents in Lmnaflox/floxSM22αCre mice. To our knowledge, our results provide the first evidence of phenotypic alterations in VSMCs that might contribute significantly to the pathophysiology of some forms of LMNA-DCM. Future work addressing the mechanisms underlying vascular defects in LMNA-DCM may open new therapeutic avenues for these diseases.


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Músculo Liso Vascular/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Cardiomiopatia Dilatada/patologia , Mutação
16.
SAGE Open Med Case Rep ; 11: 2050313X231179810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425136

RESUMO

The case report shares evidence for a better understanding of atrial standstill. This being a rare arrhythmogenic condition. This is a 46-year-old woman presented with multiple sites of arterial embolism, including lower extremity arteries, coronary artery, and cerebral artery. Unexpectedly, multiple arterial embolization in the patient was due to atrial standstill by transthoracic echocardiography and cardiac electrophysiological study. An additional family investigation revealed that the patient's brother and sister also suffered from this disease. In search of further understanding the case, we carried out the genetic testing of the family and a frame shift double-G insertion mutation at c.1567 in the LMNA gene was found in all the three individuals. The patient recovered well after anticoagulation therapy and left bundle branch area pacing. This report remarks on the importance of multiple sites of arterial embolism which should be wary of family atrial standstill.

17.
FEBS Open Bio ; 13(8): 1459-1468, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37345209

RESUMO

Ataxia-Telangiectasia (A-T) is a very rare autosomal recessive multisystemic disorder which to date is still uncurable. The use of glucocorticoid analogs, such as dexamethasone (dex), can improve neurological symptoms in patients, but the molecular mechanism of action of these analogs remains unclear. Here, we report the effects of dex in regulating the interaction between Lamin A/C and HDAC2 in WT and A-T cells. Upon administration of dex to A-T cells, we first observed that the accumulation of HDAC2 on the CDKN1A promoter did not exert a repressive role on p21cip1/waf1 expression, and second, we established that HDAC2 accumulation was not dependent on Lamin A/C. Both of these results are contrary to previous reported outcomes in other cellular models. Furthermore, large amounts of LAP2α and FoxO3a were found to occupy the CDKN1A promoter with matched p21cip1/waf1 overexpression. Hence, in A-T cells p21 could be activated as a result of a dex-induced rearrangement of a multicomponent complex, composed of Lamin A/C, HDAC2, LAP2α, pRb, E2F1, and FoxO3a, at the CDKN1A gene promoter.


Assuntos
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/genética , Lamina Tipo A/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glucocorticoides , Dexametasona/farmacologia , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo
18.
Adv Biol (Weinh) ; 7(9): e2200301, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37303127

RESUMO

This study aimed to enhance understanding of LMNA mutation-related lipodystrophy by elucidating genotype-phenotype correlations and potential molecular mechanisms. Clinical data from six patients with LMNA mutation-related lipodystrophy are analyzed, and four distinct LMNA mutations are identified. Associations between mutations and lipodystrophy phenotypes are assessed. Three LMNA mutation plasmids are constructed and transfected into HEK293 cells. Protein stability, degradation pathways, and binding proteins of mutant Lamin A/C are examined using Western blotting, co-immunoprecipitation, and mass spectrometry. Confocal microscopy is employed to observe nuclear structure. Four different LMNA mutations are identified in the six patients, all exhibiting lipodystrophy and metabolic disorders. Cardiac dysfunction is observed in two out of six patients. Metformin and pioglitazone are the primary treatments for glucose control. Confocal microscopy revealed nuclear blebbing and irregular cell membranes. Mutant Lamin A/C stability is significantly decreased, and degradation occurred primarily via the ubiquitin-proteasome system (UPS). Potential binding ubiquitination-related proteins of mutant Lamin A/C are identified. This study investigated LMNA mutation-related lipodystrophy, identifying four unique mutations and their connections to specific phenotypes. It is found to decreased mutant Lamin A/C stability and degradation primarily through the UPS, offering new insights into molecular mechanisms and potential therapeutic targets.


Assuntos
Lipodistrofia , Doenças Metabólicas , Humanos , Lamina Tipo A/genética , Células HEK293 , Mutação , Lipodistrofia/genética
19.
Cureus ; 15(5): e38860, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37303410

RESUMO

Mutations in the LMNA gene cause heterogeneous phenotypes such as myopathy, progeroid syndromes, hereditary neuropathies, cardiomyopathies, or lipodystrophies. A specific LMNA mutation manifesting as dilated cardiomyopathy (dCMP), and iron metabolism disorder has not been reported. The patient is a 50-year-old female with palpitations and fatigue since childhood, hyperlipidemia for 25 years, gastroesophageal reflux for 20 years, arterial hypertension for eight years, and iron deficiency for one year, requiring intravenous iron supplementation. Family history was positive for dCMP, malignant ventricular arrhythmias (MVAs), and sudden cardiac death (SCD). She was diagnosed with dCMP at the age of 49. Genetic workup revealed the variant c.154C>G (p.Leu52Val) in LMNA, which was also found in two female cousins. Because of ventricular tachycardia in the long-term ECG recordings, an implantable cardioverter-defibrillator (ICD) was implanted in addition to antiarrhythmic, antihypertensive, heart failure, and lipid-lowering treatment. With this therapy, the patient remained in stable condition during the one-year follow-up and was able to successfully carry out her job. In summary, this case shows that the variant c.154C>G (p.Leu52Val) in LMNA manifests not only with dCMP, but also with hyperlipidemia, steatosis, gastroesophageal reflux, arterial hypertension, and iron deficiency. Primary prophylaxis with an ICD and additional symptomatic treatment can stabilise the condition and eventually prevent familial SCD.

20.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G184-G195, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366543

RESUMO

There is increasing evidence for the importance of the nuclear envelope in lipid metabolism, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Human mutations in LMNA, encoding A-type nuclear lamins, cause early-onset insulin resistance and NASH, while hepatocyte-specific deletion of Lmna predisposes to NASH with fibrosis in male mice. Given that variants in the gene encoding LAP2α, a nuclear protein that regulates lamin A/C, were previously identified in patients with NAFLD, we sought to determine the role of LAP2α in NAFLD using a mouse genetic model. Hepatocyte-specific Lap2α-knockout (Lap2α(ΔHep)) mice and littermate controls were fed normal chow or high-fat diet (HFD) for 8 wk or 6 mo. Unexpectedly, male Lap2α(ΔHep) mice showed no increase in hepatic steatosis or NASH compared with controls. Rather, Lap2α(ΔHep) mice demonstrated reduced hepatic steatosis, with decreased NASH and fibrosis after long-term HFD. Accordingly, pro-steatotic genes including Cidea, Mogat1, and Cd36 were downregulated in Lap2α(ΔHep) mice, along with concomitant decreases in expression of pro-inflammatory and pro-fibrotic genes. These data indicate that hepatocyte-specific Lap2α deletion protects against hepatic steatosis and NASH in mice and raise the possibility that LAP2α could become a potential therapeutic target in human NASH.NEW & NOTEWORTHY The nuclear envelope and lamina regulate lipid metabolism and susceptibility to nonalcoholic steatohepatitis (NASH), but the role of the nuclear lamin-binding protein LAP2α in NASH has not been explored. Our data demonstrate that hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis, NASH, and fibrosis in male mice, with downregulation of pro-steatotic, pro-inflammatory, and pro-fibrotic lamin-regulated genes. These findings suggest that targeting LAP2α could have future potential as a novel therapeutic avenue in NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos/metabolismo , Laminas/metabolismo , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/prevenção & controle , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA